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AND OSCAR FLORES1

1School of Aeronautics, Universidad Politécnica, 28040 Madrid, Spain
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The dynamics of the sublayer and buffer regions of wall-bounded turbulent flows
are analysed using autonomous numerical simulations in which the outer flow, and
on some occasions specific wavelengths, are masked. The results are compared with
a turbulent channel flow at moderate Reynolds number. Special emphasis is put on
the largest flow scales. It is argued that in this region there are two kinds of large
structures: long and narrow ones which are endogenous to the wall, in the sense of
being only slightly modified by the presence or absence of an outer flow, and long
and wide structures which extend to the outer flow and which are very different in
the two cases. The latter carry little Reynolds stress near the wall in full simulations,
and are largely absent from the autonomous ones. The former carry a large fraction
of the stresses in the two cases, but are shown to be quasi-linear passive wakes of
smaller structures, and they can be damped without modifying the dynamics of other
spectral ranges. They can be modelled fairly accurately as being infinitely long, and
it is argued that this is why good statistics are obtained in short or even in minimal
simulation boxes. It is shown that this organization implies that the scaling of the
near-wall streamwise fluctuations is anomalous.

1. Introduction
This paper deals with the large-scale organization of the sublayer and buffer regions

of wall-bounded turbulent flows. The companion paper by del Álamo et al. (2004b)
extends the discussion to the logarithmic and outer layers. The interactions between
the two regions are described in one or in the other paper, depending on where the
data fit more naturally.

The small structures in the near-wall layer below y+ ≈ 80 scale approximately with
the friction velocity uτ and with the kinematic viscosity ν, and Jiménez & Pinelli (1999)
showed that they change little in autonomous wall flows which have been modified to
remove all the vorticity fluctuations from the outer flow. Their ‘unit cell’ is formed by
a short stretch of a velocity streak and by a pair of quasi-streamwise vortices, such
as those described by Robinson (1991). Their characteristic streamwise and spanwise
length scales are λ+

x × λ+
z ≈ 400 × 100, and they move with an advection velocity

c+ ≈ 10. Fully nonlinear individual structures of similar sizes have been isolated by
different methods in simplified Poiseuille (Jiménez & Moin 1991; Jiménez & Simens
2001; Waleffe 2001) and Couette flows (Nagata 1990; Waleffe 1998; Kawahara &
Kida 2001). The intuitive reason for their scaling is that the impermeability condition
constrains the wall-normal velocity and length scales, but Townsend (1976) noted that
no such constraint exists for the wall-parallel velocity fluctuations, u and w, which
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can be large. He called those hypothetical structures ‘inactive’ because they cannot,
by themselves, generate Reynolds stresses. Because the inactive structures contain
energy without contributing shear stress, they can degrade the strict wall scaling of
the fluctuations.

There is experimental evidence that the near-wall scaling is only imperfect. In the
logarithmic and upper buffer layers there are very large structures, much longer or
wider than they are tall, which scale at least in part with the boundary layer thickness
h (Perry, Henbest & Chong 1986), and other features of the buffer layer, such as the
period between ‘bursts’, also scale partly in outer units (Laufer & Narayanan 1971;
Shah & Antonia 1989). Hites (1997) measured the longitudinal velocity spectrum
in boundary layers over a wide range of Reynolds numbers, and found that above
y+ ≈ 40 the streamwise velocity spectrum is bimodal, with a shorter peak whose
wavelength scales in wall units and a longer one that scales in outer units. His
conclusions are supported by Österlund et al. (2000) using spectra from Österlund
(1999), as well as by the results of Kim & Adrian (1999) and Morrison et al. (2002a) in
pipe flows above y+ = 50. Older data to the same effect were summarized by Jiménez
(1998).

This longer spectral peak is missing below the buffer layer, but Hunt & Morrison
(2000) noted that, since long structures contain a substantial part of the turbulent
kinetic energy of the overlying logarithmic region, they should influence the sublayer.
Because the ratio between the boundary layer thickness and the viscous wall length
scale is the friction Reynolds-number Reτ = uτh/ν, this interaction between layers
should appear as a large-scale effect in the high-Reynolds-number limit. Although
less clear than for the upper buffer layer, there is also evidence for Reynolds-number
effects in the lower buffer layer and in the sublayer. Metzger & Klewicki (2001)
compared spectra at y+ = 15 in two boundary layers with Reθ = 2000 and 5 × 106,
and found a substantial excess of low-frequency energy in the latter with respect to
the former. DeGraaff & Eaton (2000) made a comparative study of several boundary
layers in a range of Reynolds numbers similar to those of Hites (1997), and found that
the intensity of the near-wall peak of the longitudinal velocity fluctuations increases
slowly with Reynolds number. Metzger et al. (2001) extended these results to the
atmospheric boundary layer, and Morrison et al. (2002b) to high-Reynolds-number
pipes.

Figure 1 shows longitudinal spectra of the streamwise velocity at y+ =20, and
confirms this large-scale effect. The contours corresponds to individual premultiplied
spectra which have been stacked together as a function of their Reynolds numbers,
and which are treated as if they were a single function of Reτ and of the streamwise
wavelength λx =2π/kx . The upper block in the figure corresponds to the boundary
layers in Hites (1997), while the lower one corresponds to three numerical channels
by del Álamo et al. (2004a). The single spectrum between the two blocks will be
discussed below.

The short-wavelength spectral peak scales relatively well in wall units as λ+
x ≈ 1000,

but the long-wavelength edge of the spectra moves to the right as the Reynolds
number increases, approximately by ten times the boundary layer thickness or the
channel half-width. Note that the longest wavelengths, of the order of 104–105 wall
units, are at least an order of magnitude longer than the classical buffer-layer streaks.

The explanation mentioned above that these long structures are the near-wall
reflections of the outer flow is plausible, but the possibility that the wall organizes
itself cannot be discounted. Large-scale self-organization is a common feature of
many nonlinear systems. The main goal of this paper is to determine how much of
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Figure 1. Longitudinal energy spectra for various near-wall flows. y+ = 20. Grey levels
correspond to the one-dimensional premultiplied spectra kxE

1D
uu /u2

τ , as a function of the
wavelength λx = 2π/kx , and of the Reynolds number. The contours are equidistant with
respect to the global maximum of all the spectra. Each line corresponds to a different
Reynolds number. The upper block of contours is interpolated from fifteen boundary layers
(Hites 1997). The lower one is interpolated from three numerical channels (del Álamo &
Jiménez 2003; del Álamo et al. 2004a). The middle line is the autonomous wall computation
C1 on table 1, whose Reynolds number has been assigned arbitrarily to fit into the available
gap. The dashed line is λx = 10h, where h is either the channel half-height or the boundary
layer thickness, and the solid one is λ+

x = 1000.

the large-scale organization of the inner layer is autonomous and how much is due,
in full turbulent flows, to the influence of the outer region. We also seek to clarify
the structure of the autonomous component. This is done by analysing numerical
experiments in which the outer flow is removed, and by comparing them with a
full-depth turbulent simulation at moderate Reynolds number.

The paper is organized as follows. The numerical technique used to isolate the
wall region is described in § 2. The results, with special emphasis on the similarities
and differences between the large-scale spectral characteristics of the autonomous
and of the full flows, are discussed in § 3. Dynamical aspects and further analysis are
presented in § 4, and conclusions are offered in § 5. A preliminary report of some of
the results in this paper is Jiménez, Flores & Garcı́a-Villalba (2001).

2. The numerical experiments
The numerical scheme used for the autonomous simulations is similar to that

described by Jiménez & Pinelli (1999) and by Jiménez & Simens (2001), but the
slightly modified version described here should be preferred to the previous ones. The
Navier–Stokes equations are integrated in the form of evolution equations for the
wall-normal vorticity ωy and for the Laplacian of the wall-normal velocity φ = ∇2v,
as described in detail by Kim, Moin & Moser (1987), using a pseudospectral code
with dealiased Fourier expansions in the two wall-parallel directions, x and z, and
either even or odd Chebychev polynomials in y.

Although the choice of the evolution variables, both of which are related to the
vorticity, is essentially numerical, they have an interpretation that will later be useful.
All the other flow variables are enslaved to them by linear relations which are local in
time and in spectral space. The Fourier coefficients v̂(y) of the normal velocity are for

example solutions of Helmholtz problems in which the forcing is φ̂(y) and, because v
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is predominantly generated near the wall by the streamwise vortices (Robinson 1991),
we will associate the evolution of φ or of v with the dynamics of the vortices.

In the same way, the Fourier coefficients of the streamwise velocity component are

û =
ikx

|k|2 ∂yv̂ − ikz

|k|2 ω̂y, (2.1)

where |k|2 = k2
x +k2

z . For the elongated structures which will be of interest here, kz � kx .
The first term in the right-hand side of (2.1) is then negligible, and ωy measures the
spanwise inhomogeneity of u. We will therefore associate ωy with the streaks.

At each time step the right-hand sides of the two evolution equations are multiplied
by a damping mask 1 − �t F (y), where

F (y) = 0 if y � δ, F (y) = 1/T if y � δ2 = 1.5δ, (2.2)

with the two limits connected smoothly by a cubic spline. Each time step can be
written schematically as

ω(t + �t) = [ω(t) + �tN(t)][1 − �tF (y)] ≈ ω(t) + �t[N (t) − F (y)ω(t)], (2.3)

where ω stands for any of the two evolution variables, and N represents the full ∂tω

from the Navier–Stokes equations, which are not modified below δ. To the lowest
order (2.3) is the discretization of

∂tω − N = −F (y)ω. (2.4)

In this interpretation, T acts as a damping time independent of the length scale
of the fluctuations and, when compared with the viscous damping time λ2/ν for
fluctuations of size λ, it defines a cutoff length λ+

c = (T +)1/2. Vorticity fluctuations
shorter than λc are predominantly damped by viscosity, and longer ones are damped
by the numerical mask. In this paper T + ≈ 1, and all the fluctuations in the masked
layer are suppressed by the mask. Irrotational fluctuations are not affected, and the
outer edge of the Navier–Stokes layer merges into a potential core which prevents
the formation of viscous boundary layers at the mask boundary.

The flows in Jiménez & Pinelli (1999) and Jiménez & Simens (2001) were integrated
at constant mass flux in a channel, driven by a variable pressure gradient. This led to
long integration times, because of the slow viscous evolution of the laminar flow above
the mask, and added an extra parameter with no clear physical interpretation. The
pressure gradient is substituted here by a constant shear stress imposed at the upper
computational boundary. No-slip impermeable boundary conditions are imposed at
y = 0, and the velocities are matched to the outer potential fluctuations at the edge
of the computational domain, y = 1, using the method of Corral & Jiménez (1995).

The mask height is adjusted so that the vorticities are essentially zero at the
edge of the computational domain, and their wall-normal spectral expansions remain
accurate. The expansions of the variables extending into the potential region, such as
the velocities, are supplemented by exponentials. The coefficient of the exp[i(kxx+kzz)]
Fourier component of v is, for example, expanded in terms of odd Chebychev
polynomials plus two extra basis functions,

exp
[
±

(
k2

x + k2
z

)1/2
y
]
, (2.5)

which describe its irrotational component. Their coefficients are adjusted to satisfy
the impermeability condition at y = 0 and the vanishing of the fluctuations as y → ∞.

The (0, 0) Fourier modes of u and w cannot be expressed in terms of ωy and φ,
and are not modified by the numerical mask. In their expansions the exponentials are
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Case δ+ L+
x L+

z �x+ �z+

C1 72 12, 000 2000 13 7.5
C2 60 12, 000 1000 13 7.5
C3 72 6, 000 1000 13 5
F0 550 14, 000 7000 13 7.5

Table 1. Parameters of the autonomous simulations used in the text. The case F0 is a
full-channel simulation by del Álamo & Jiménez (2003), used for comparison, in which δ is
the half-height. The resolutions �x and �z are given after dealiasing.

replaced by linear functions,

a0 + b0y. (2.6)

The linear mean velocity profile in the region of irrotational fluctuations reflects
the absence of a mean pressure gradient. The constant a0 is determined by the wall
boundary condition. The slope b0 is zero for w, and defines for u the constant spatially
averaged wall friction.

In all the experiments in this paper b0,u is scaled so that the height of the
computational domain is y+ =120. Note however that this is not physically relevant,
because the mask determines the largest possible wall-normal extent of the turbulent
structures. The only relevant turbulent Reynolds number is δ+ = uτ δ/ν.

Since our goal is to study the large-scale organization of the flow, the simulations
are performed in computational boxes whose streamwise and spanwise periodicities
are long, L+

x ≈ 1.2 × 104, and wide, L+
z ≈ 103. The comparatively narrow spanwise

box size was found not to interfere with the structures, which are narrow in the
autonomous simulations. A simulation in a box twice as wide did not show any
differences with the narrower one. The resolution is in most cases ∆x+ = 13 and
∆z+ = 7.5, resulting in 1536 × 192 collocation points for the case mentioned above.
The wall-normal expansion, which is not dealiased, uses 49 Chebychev modes. The
first collocation point is y+ =0.06. While this resolution was found to be sufficient
for the large-scale structures, it results in some spanwise truncation of the vorticity
spectra, specially around y+ ≈ 40. A few simulations were run at the higher spanwise
resolution ∆z+ = 5. No appreciable differences were found in the velocity profiles or
spectra, but all our discussions for the vorticity use the higher-resolution simulations.
A summary of the principal computational experiments can be found in table 1. The
reference channel F0 is also computed in a large box, 8π × 2 × 4π, and its adequacy
with respect to the large structures is discussed by del Álamo & Jiménez (2003).

Because of the lack of either mean spatial growth or of a pressure gradient, these
autonomous simulations do not correspond directly to the wall region of any turbulent
flow, except perhaps to a single wall in a Couette flow. Their closest analogue would
be the wall region of either boundary layers or channels at infinitely large Reynolds
numbers, but there is nothing in them equivalent to the infinitely long outer scales
of full flows in that limit. Any large scales in the autonomous systems have to be
generated by the wall itself.

3. Results
Most of the experiments in this paper use δ+ = 72, but a few were run at δ+ =60

to check the effect of the mask. The resulting turbulence statistics are compared in
figure 2 with the full channel F0. The mean velocity shows a short ‘logarithmic’ layer
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Figure 2. Mean profiles for: , the autonomous simulation C1, with δ+ = 72; , the
autonomous case C2, δ+ =60; , the full channel F0, with Reτ = 550. (a) Mean velocity.
(b) Streamwise velocity fluctuations.

before joining the linear profile of the irrotational region, and the velocity fluctuations
agree reasonably well with the full-channel results up to about half the mask height.
The peak of the fluctuations just above δ is an artifact of the damping, and was
described by Jiménez & Simens (2001). The results for other quantities are similar to
those in the figure, and from now on we will only discuss the δ+ = 72 cases below
y+ ≈ 40.

Figure 3 displays two-dimensional spectral densities, E2D(λx, λz), for the full and
autonomous flows. The first surprise is the almost perfect correspondence between
the two cases, specially for the wall-normal velocity component, whose structures
are relatively short and narrow. The second one is that the large structures of the
streamwise velocity, and to a certain extent those of w, are longer in the autonomous
flow than in the full channel. Both results contradict the models in which the outer
flow is the origin of the near-wall large scales, since there are no turbulent fluctuations
above y+ ≈ 80 in the autonomous case. The longitudinal one-dimensional spectrum of
u in the autonomous flow C1 has been included in the compilation in figure 1 as the
isolated line in the gap between the boundary layers and the channels. The Reynolds
number assigned to it, Reτ ≈ 1000, is arbitrary, since we have seen that the only
relevant one would be δ+ ≈ 72. It emphasizes that the autonomous spectrum is much
longer than what could be expected from its flow thickness. Longer computational
boxes were beyond our computational resources, but all our experiments with shorter
boxes suggest that the autonomous spectra extend to fill the whole length of any
simulation.

The longer scales are also wider, and very anisotropic, as shown by the location
of the spectra with respect to the locus of wall-parallel isotropy included in figure 3.
This is specially true for the streamwise velocity and for the Reynolds stresses, whose
spectral ‘ridges’ follow fairly well the power law

λ+
z

/
λ+

x

1/3
= 13. (3.1)

The spectra of the other two velocity components are closer to isotropic, but a trace
of (3.1) is found in w, specially in the autonomous simulation.

The wall-normal structure of the spectral distributions is shown in figure 4.
Individual one-dimensional spectra, E1D(λ), are obtained by summing E2D(λx, λz)
either over the spanwise or over the streamwise wavenumbers, and are represented
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Figure 3. Premultiplied two-dimensional velocity spectra and cospectra, kxkz|E2D(λx, λz)|/u2
τ ,

as functions of the streamwise and spanwise wavelengths. y+ = 16. The shaded contours are
the autonomous simulation C1. The lines are the full turbulent channel F0. The solid straight
lines are λx = λz, and correspond to horizontally isotropic structures. The dashed straight lines
are λ+

z /λ+
x

1/3
= 13, as in (3.1). The contours are (0.25, 0.5, 0.75) times the maximum value

of the corresponding spectrum for the full channel. (a) Streamwise velocity. (b) Wall-normal
velocity. (c) Reynolds-stress cospectrum. (d) Spanwise velocity.

as functions of the wavelength and of the wall distance y. Again there is good
correspondence between the autonomous and the full cases in the lower half of
the unmasked layer. The vertical velocity is concentrated into structures for which
λ+

x × λ+
z ≈ 300 × 50, strongest near y+ = 40, which will be seen in § 4 to agree with the

signature of the near-wall quasi-streamwise vortices. The streamwise velocity spectra
are slightly wider and much longer, strongest at y+ = 10–20, and can be interpreted
as the signature of the near-wall streaks.

An important scale is defined by the peak of the Reynolds-stress cospectrum,
which is shown in figures 4(e) and 4(f) multiplied by the gradient ∂yU of the mean
velocity, to represent the spectral distribution of the turbulent energy production. It is
concentrated below y+ =30, around λ+

x × λ+
z ≈ 600 × 100. The secondary peak which

appears above the mask in the autonomous simulation is due to the large velocity
gradient in that region, and has no dynamical significance; all its energy is dissipated
locally by the numerical mask. It is seen in figures 3(c) and 4(e) that the near-
wall production extends to fairly long wavelengths, specially for the autonomous
simulation. In fact, if we define ‘long’ structures as those longer than twice the
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Figure 4. Premultiplied one-dimensional spectra, kE1D(λ)/u2
τ , as functions of the wavelength

and of the wall distance. The shaded contours belong to the autonomous simulation C1,
and the lines to the full channel F0. The contours are uniformly spaced with respect to the
overall maxima of the full-channel spectra. The dashed horizontal line is the lower limit of
the numerical mask C1. (a, b) Streamwise velocity. (c, d) Wall-normal velocity. (e, f ) Energy
production cospectra, −(∂yU ) kE1D

uv . (a), (c) and (e) Streamwise spectra, and (b), (d) and (f)
spanwise spectra.

production peak, λ+
x � 1200, they contain 51% of the energy of the streamwise

velocity component below y+ = 40, 53% of the Reynolds stresses and 49% of the
energy production, but only 24% of the wall-normal energy. The corresponding
numbers for the full channel are 51%, 46%, 44%, and 20%.

The reason why the long structures carry Reynolds stresses, even with comparatively
little vertical velocity, is that they are very organized, with a high correlation among
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Figure 5. (a) Correlation coefficient Cuu for the mode λ+
x = 3000, λ+

z = 140. Contours are
0.5(0.1)0.9, and the shaded region is above 0.9. The dashed lines mark y0 in (3.3), and the dotted
lines are the mask height. (b) Coherence height H+

uu = 30(2)36. The shaded contours are case
C1, and the lines are the full channel F0. The two straight lines are as in figure 3. The dashed
contour is the region in which Cuu(15+, 0.5δ) > 0.15 for case F0.

their velocity components. The structure parameter −Euv/(EuuEvv)
1/2, not shown in

the figure, is very close to unity in the spectral ‘tail’ of the production peak.
The large scales are also deep. The correlation coefficient between the individual

Fourier coefficients û of the streamwise velocity at two wall distances is defined as

Cuu(kx, kz, y, y ′) =
|〈û(kx, kz, y)û∗(kx, kz, y ′)〉|

(〈|û(kx, kz, y)|2〉〈|û(kx, kz, y ′)|2〉)1/2
, (3.2)

where ()∗ stands for complex conjugation, and is also very close to unity for long and
wide wavelengths. Note that the numerator in (3.2) is an absolute magnitude, instead
of the more usual real part, and that Cuu is insensitive to any possible tilting of the
structures. An example for a particular Fourier mode of the autonomous simulation
is given in figure 5(a). Its correlation coefficient remains above 0.6 within the reliable
region y+ < 40, and never falls below 0.4 within the full depth of the computational
domain. Figure 5(b) shows the spectral distribution of the ‘coherence height’ within a
wall distance y0, which is defined for each mode as

H 2
uu(kx, kz) =

∫ y0

0

∫ y0

0

Cuu dy dy ′. (3.3)

The integration height used for the integrals in the figure is y+
0 = 38. All the modes in

the upper-right-hand corner of the spectral plane, which corresponds to the spectral
production tail, have correlation heights which are larger than y+ = 30, and are
therefore essentially coherent over the full integration height. That result is consistent
with those of Bullock, Cooper & Abernathy (1978), who computed covariances for
velocity signals filtered in different frequency bands. In a pipe at Reτ =2600 they
found that the correlation coefficient of u between y+ = 50 and all the y ′ <y was
larger than 0.6 when λ+

x � 1000, but that it vanished in the sublayer for the shorter
wavelengths λ+

x < 250.
The modes that are correlated across all heights, from y to the wall, such as the

one in figure 5(a), correspond to the ‘attached’ eddies proposed by Townsend (1976).
Figure 5(b) shows that, when the heights considered are in the buffer region, the size
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0

500

1000

(a)

x+

z+

z+

0 1000 2000 3000

500

1000

(b)

Figure 6. Structure of the velocity on a wall-parallel plane at y+ = 16. Case C1. Both parts
correspond to the same plane of the same snapshot, with the mean velocity from left to right.
The black areas are below one standard deviation from the mean, and the light-grey ones are
one standard deviation above. (a) Streamwise component. (b) Wall-normal component.

of the attached structures scales in wall units, λ+
x � 1000 and λ+

z � 60. For each
y there is a attached spectral region, and it follows from the above definition that
those farther from the wall are contained within the lower ones. In a kinematic sense
the latter are influenced by the former, but not vice versa. Del Álamo & Jiménez
(2003) and del Álamo et al. (2004a) found that the structures correlated across the
full channel scale in outer units, λx � 5h and λz � h. That region is represented for
case F0 in figure 5(b) as the dashed contour, and it is where the autonomous and the
full simulations disagree, precisely because of the outer structures are absent in the
former.

4. Dynamics
4.1. The wall-normal velocity

The simplest interpretation of the large-scale organization of the wall-normal velocity
is that, to lowest approximation, it has none. In the snapshots of the buffer layer
in figure 6 the streamwise velocity is dominated by the familiar long streaks, while
the wall-normal velocity contains only isolated active regions, roughly 300 − 500 wall
units long, randomly distributed over the plane. This difference in length between the
two kinds of structures has been described qualitatively in essentially all the numerical
simulations of the near-wall layer, and is for example already mentioned in the review
by Robinson (1991). It will be made more quantitative in this section. The light and
dark grey regions appearing side by side in figure 6(b) are sharp spanwise variations
of v induced by the buffer-layer quasi-streamwise vortices. If we model the spanwise
structure of v by a random array of zero-mean pairs of delta-functions separated in
z by a distance 2b, the resulting premultiplied spectrum is kzEvv(kz) ∼ kz sin2(kzb)†,
which is maximum at λz ≈ 3.4b. Comparing this value with the spanwise location of
the maximum in figure 3(b), λ+

z ≈ 50, we obtain a spanwise separation between upwash

† The Fourier transform of δ(z − b) − δ(z + b) is iπ−1 sin(kb), and convolving the dipole with a
random array of deltas just multiplies the spectrum by a constant.
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Figure 7. Case C1, y+ = 16. (a) Two-dimensional spectrum of v, not premultiplied. (b) Wall-
normal distribution of v′, computed over spanwise spectral bands. The vertical dotted line is
the mask height. , Band A in (a), λ+

z =20–100; , band B, λ+
z = 100–500. Lines with

symbols are from the full channel F0. (c) Advection velocity of individual modes for φ = ∇2v,
plotted as a function of the streamwise wavenumber. Each line is averaged over one of the
wall-distance bands y+ = 0(10)40. Velocity increases with wall distance. Lines are as in (b). (d)
P.d.f. of the logarithms of the longitudinal and lateral dimensions of the bounding rectangles
for individual v-structures. The contours are logarithmically spaced by half an order of
magnitude. The hatched region is the 0.25 contour of the premultiplied v spectrum in figure 3(b).
The dashed straight lines in (a) and (d) are equation (3.1).

and downwash of 2b+ ≈ 30, which is the diameter of the maximum azimuthal velocity
isosurface of a streamwise Rankine vortex of radius R+ ≈ 13, in good agreement with
the value obtained by Kim et al. (1987).

Several lines of evidence supporting this model are summarized in figure 7. Consider
first the spectrum of v, which is shown in figure 7(a) without premultiplication. A
spectral tail does not necessarily imply long structures. The spectrum of a random
array of delta-functions is for example flat, and that of a random array of objects of
size λ0 is flat for λ � λ0. The horizontal contour lines towards the right-hand side of
the figure represent such a flat spectrum, and suggest that v is formed by a random
superposition of compact structures whose sizes lie roughly along the dashed line
representing the power law (3.1).

Figure 7(b) shows the vertical distribution of the v-fluctuations, summed over
spectral bands which have been drawn in figure 7(a). They are compared with those
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in the full channel. The intensity of the narrow structures in band A peaks within
the buffer region in both cases. They are the structures represented in figure 6(b).
It can be shown that the vertical distribution of these fluctuations is the same for
all the wavelengths longer than λ+

x � 300, suggesting that they all refer to an array
of structures of roughly that length. The wider scales in range B peak farther away
from the wall, and they only agree with the full channel below y+ ≈ 25. They are
the truncated remnants of structures which in the latter case are associated with the
lower logarithmic layer.

Figure 7(c) displays the phase velocity of the Fourier modes of φ, averaged over
bands of wall distance. The phase velocity is usually computed from the space–time

spectrum, but we have used a different definition. A simple wave φ = φ̂ exp[ikx(x−ct)],
with phase velocity c, satisfies

c = Im
〈φ ∂tφ

∗〉
kx〈φ φ∗〉 , (4.1)

where Im is the imaginary part. In more complicated situations (4.1) can still be used
as a definition of the phase velocity and, since ∂tφ is available from the equations of
motion, it is usually more convenient in numerical simulations. Its relation with the
more usual spectral definition (Wills 1964) is documented in del Álamo et al. (2004b),
where it is compared with previous experiments.

The velocities in figure 7(c) are plotted for two different bands of spanwise
wavelengths, which correspond to those in figure 7(b). For the narrower structures
in band A, the phase velocity is essentially independent of λx , in agreement with the
interpretation that all the Fourier modes in this band correspond to the same objects.

The velocities for the wider structures in band B behave differently. Below λ+
x < 200

they follow closely the results for the narrow modes, although it is clear from the
spectrum that those short and wide modes contain very little energy. For longer
wavelengths the phase velocity increases, and converges to a high value which is
independent of the wall distance. This is the region which in figure 5 contains
structures spanning the full buffer layer and spilling into the potential core. Their high
advection velocities, which are higher in the autonomous than in the full simulations,
are in the autonomous case representative of the mean velocities in the potential core.
In the full simulations they are of the same order as the velocities in the logarithmic
layer.

Kim & Hussain (1993) also found that the phase velocity of v was relatively
insensitive to λx and increased weakly with λz, but their computational domain was
too small to show the sharp growth of c for long and wide wavelengths. Krogstad,
Kaspersen & Rimestad (1998) investigated a laboratory boundary layer at Reτ ≈ 600,
and found an increase of the advection velocities at roughly the same values as those
in figure 7.

The overall model suggested by these observations is a random array of structures
with characteristic sizes of the order of λ+

x × λ+
z = 300 × 50, presumably generated by

the quasi-streamwise vortices, moving with a phase speed c+ ≈ 10. They contain the
bulk of the energy of v below y+ = 50. Wider v-structures exist, but they are taller
and move faster, and they are linked to the flow above the buffer layer.

The size of the v-structures can be estimated directly by analysing flow snapshots
such as those in figure 6(b). Each flow plane is segmented into regions in which v is
above or below one positive or one negative standard deviation (v+ = ± 0.59). Those
are then separated into individual connected objects, and inscribed into rec-
tangles aligned with the flow. Connectivity is defined by the four orthogonal nearest
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Figure 8. (a) P.d.f. of the logarithms of the longitudinal and lateral dimensions of the bounding
rectangles for individual u-structures, as in figure 7(d): , low-velocity streaks; ,
high-velocity regions. The dashed straight line is (4.7). (b) Same as (a) for the width of the
structures, computed from their areas. The solid straight line is (4.6) and the dashed one is (4.5).
Case C1. y+ = 16. The hatched region in both figures is the 0.25 contour of the premultiplied
u-spectrum in figure 3(a).

neighbours. There is little difference at this wall distance between regions of positive
and of negative v, and the p.d.f. of the widths and lengths of the bounding rectangles
which is presented in figure 7(d) reflects their common distribution. It accounts for
about 20% of the total area of the flow sections analysed. The diagonal cutoff in the
lower-left corner of the figure is an artifact of the algorithm, which rejects structures
smaller than 20 grid points as being too close to the numerical resolution.

The lengths and widths in figure 7(d) agree reasonably well with the peak of the
premultiplied spectrum of v, which is included in the figure for reference, although
the two quantities are only indirectly related. Sizes and spectral wavelengths are
proportional but not identical and, for example, the premultiplied spectrum of a
‘box’ function of length b peaks at λx = 2b. Note that there are no structures longer
than about 1000 wall units, and that their characteristic length is about 150+. This
supports the qualitative impression from figure 6(b) that the buffer-layer vortices are
short structures, and the model developed above in which the v-spectrum is explained
in terms of compact objects in its short-wavelength end.

The analysis described here was repeated for the full simulation F0, with essentially
identical results.

4.2. The streamwise velocity streaks

The visual difference between the lengths of the u- and v-structures in figure 6 is
confirmed by comparing the probability distributions of their bounding rectangles in
figures 7(d) and 8(a). There is for u a clear difference between high- and low-velocity
structures, which are defined as being beyond one standard deviation from the local
mean velocity (u+ = 11±2.9 at y+ =16). The high-velocity structures are shorter than
the low-velocity streaks (Robinson 1991), but they are both at least 2 to 5 times longer
than the structures of v. When the widths ∆z of the structures are computed as their
actual surfaces divided by their lengths, the high-velocity regions are found to be at
most 100 wall units wide, while the width of the low-velocity streaks rarely exceeds
50 wall units (figure 8b). Visual inspection of individual objects in figure 6(a) shows
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Figure 9. (a) Spectral distribution of the production terms for ωy in (4.2). Case C3, for
100 � λ+

z � 500, at y+ = 13: , linear forcing, (∂zv̂)∂yU ; , nonlinear advection;
, viscous diffusion. (b) P.d.f. of the relative position of the v-structures within the

bounding rectangles of the u-structures, plotted against the length of the u-structures. The
p.d.f.s have been corrected for the logarithmic abscissae, and the contours are linearly spaced
by 0.05. Case F0, y+ = 12. Lines as in figure 8.

that the longest connected streaks are complex objects formed by the coalescence of
several shorter ones.

It is generally agreed that streaks are formed by the distortion by v of the mean
shear. The importance of this effect is shown in figure 9(a) by direct evaluation of
the magnitude of the different terms in the evolution equation for |ω̂y |2, which can be
written as

∂t |ω̂y |2/2 = −(∂yU ) Im(kz ω̂∗
y v̂) − Re(ω̂∗

yN̂ω) + Re−1Re(ω̂∗
y∇2ω̂y), (4.2)

where Re and Im are the real and imaginary parts. The three terms on the right-hand
side are the vertical advection of the mean velocity profile, the rest of the nonlinear
advection term, and the effect of viscosity. The dominant term for the long scales is
the linear forcing, which is balanced by the lateral nonlinear advection and by the
viscosity, with the latter being negligible above y+ =10–15. Streamwise gradients are
not important for structures longer than about λ+

x = 300, and the formation of the
streaks takes place essentially by stirring of the mean shear in the (z, y) cross-plane,
as modelled by Orlandi & Jiménez (1994).

This simple model can be used to explain several of the properties mentioned
above. Consider a uniform shear, u ∼ y, advected by a streamwise point vortex of
circulation γ . In the cross-plane the streamwise velocity behaves as a passive scalar,
and is deformed after a time t into

u ∼ r sin(θ − γ t/2πr2), (4.3)

where r and θ are polar coordinates centred on the vortex. A representative streak
diameter can be defined by the outermost zero of u at θ = π,

∆z = π−1(2γ t)1/2. (4.4)

As it thickens, the streak also lengthens, and its high- and low-velocity sides evolve
differently. Below y+ ≈ 30, where the vortices are located, the high-speed regions
are characterized by a fairly sharp viscous shear layer near the wall, followed by
a plateau where U+ ≈ 15. The low-speed structures have a roughly uniform shear
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S = ∂yU
+ ≈ 0.5 across the whole layer. We have seen in the previous section that the

vortices move with an advection velocity c+ ≈ 10. In the faster uniform flow of the
high-speed regions they produce wakes which move ahead of them, whose lengths
increase with time as λx ≈ |c+ − U |t . Substituting this estimate in (4.4), and assuming
that γ + = 150 (Robinson 1991) and U+ − c+ ≈ 5,

∆+
z ≈ π−1(2γ λx/|c+ − U |)+1/2 ≈ 2.5λ+

x

1/2
. (4.5)

In the sheared low-speed regions the vortices move faster than the flow, and the
wakes are left behind them. The streak is deformed by the shear S, and its length is
determined by the velocity difference between its top and its bottom, which can be
roughly estimated as λx = S�zt by assuming that the streak height is roughly equal
to its width. Substituting in (4.4), the result is

∆+
z ≈ (2γ λx/π2S)+

1/3 ≈ 4λ+
x

1/3
. (4.6)

Both (4.5) and (4.6) have been included in figure 8(b), and are reasonable
approximations to the data. Except for the numerical coefficients, whose success
is probably largely coincidental, (4.5) and (4.6) are dimensional results which could
have been constructed using the viscosity ν instead of γ . A viscous origin for the
observed power laws was proposed by Jiménez et al. (2001), but figure 9(a) shows
that the process of streak formation is inviscid except very near the wall. Note that,
because the low-speed streaks are the longest objects at any given width, (4.6) is
essentially equivalent to the spectral power law (3.1).

A prediction of this model is that the v-structures should be preferentially located
near the leading edge of the low-velocity streaks, and near the trailing edge of the
high-velocity ones. This can be tested by computing the relative position of one along
the other in the snapshots. A v-structure is associated with a given u-structure if their
bounding rectangles intersect. For each v-structure the longitudinal position xv of
its centre of gravity with respect to the leading edge of the u-structure is computed,
and normalized with the length of the u-structure. Low or negative values of xv/λx

correspond to v leading u, while xv/λx = 1 represents the trailing edge of u. The results
are summarized in the two p.d.f.s in figure 9(b). For long u-structures associated with
several v-structures there is no positional preference, but for the shorter ones, which
are presumably in the process of formation, v leads the low-velocity regions and trails
the high-velocity ones, as predicted. It can also be shown that the longer streaks are
more intense than the shorter ones, again supporting the model of their growth by
continuous pumping by the vortices.

A rough analysis can also be carried out for the meandering of the streaks, as
measured by the bounding rectangles whose dimensions are plotted in figure 8(a). As
the streaks are formed, they are also deformed transversely by the spanwise velocities
present in the buffer layer. These are of the order of w′+ ≈ 1 (Kim et al. 1987), but
only w′+ ≈ 0.5 is at wavelengths long and wide enough to influence the meandering.
The same order of magnitude is obtained by estimating the spanwise drift of the
vortices under the induction of their reflected images across the wall. The resulting
peak-to-peak meandering amplitude would be λz = 2

√
2w′t , where t is the lifetime of

the streaks. The latter can be expressed as t = λx/S∆z from the argument leading to
(4.6), and we finally obtain

λ+
z ≈

√
2w′+(

4π2λ2
x

/
γ S2

)+1/3
≈ 0.7λ+

x

2/3
. (4.7)
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Figure 10. Ratio between the one-dimensional spectra of two simulations, one of which is the
reference one C3, and the other one in which all the wavelengths larger that λ+

x = 1200 have
been filtered at all heights in one of the two evolution equations. Averaged over y+ = 2–35.

, Evv; , Eωyωy
. (a) Filter in φ. (b) Filter in ωy .

This estimate is included in figure 8(a) and represents well the behaviour of the
bounding boxes for the streaks.

4.3. Active or passive streaks

In a linearized approximation, the equations for ωy and φ are the Squire and Orr–
Sommerfeld equations of stability theory (Schmid & Henningson 2001), and their
relation is hierarchical. The equation for ωy is in that case forced by v, which is
in turn determined by an autonomous eigenvalue problem for φ. Such a one-way
coupling is unlikely in turbulent flows, since both equations are known to be involved
in a fully nonlinear regeneration cycle at the scales of the turbulent energy production,
but it is not clear whether the very long ωy streaks considered here are also active in
the sense of participating in a large-scale version of such a cycle, or whether they are
passive by-products of v.

That question can be addressed by numerical experiments in which both evolution
equations are filtered independently. In figure 10 we show the results of two
simulations in which, in addition to the numerical mask for the outer flow, one
or the other equation has been masked at all heights for all the wavelengths longer
than λ+

x ≈ 1200, about twice as long as the turbulence-producing structures. It was
shown by Jiménez & Pinelli (1999) that disrupting the cycle at wavelengths of the
order of the production peak laminarizes the flow but that, as long as the peak is
preserved, turbulence survives. That is the case in the present experiments, even though
the masked wavelengths are responsible for about half of the energy production.

Figure 10 displays the ratio of the one-dimensional spectra of the masked case
to the unmasked one. The results of the experiment in which only the φ-equation
is masked at long wavelengths are shown in figure 10(a). Those of the dual one, in
which only the ωy equation is masked, are given in figure 10(b). While masking φ has
a strong effect on ωy , the converse is not true, and the evolution of φ is relatively
independent of the masking of ωy . This supports the one-way coupling mentioned
above for the linear case, although only for the long structures, and shows that the
generation of the streaks by the vertical velocity is still active at those wavelengths.
The sharpness of the transition between masked and unmasked wavenumbers in the
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spectra for ωy in figure 10(a) suggests that the effect of the normal velocity on the
streaks is local in the streamwise wavenumber, and therefore essentially linear.

To the left of the mask the ratio of the two spectra is roughly constant, implying that
the dynamics of those scales is not strongly modified by the weakening of the large
structures. There is however in all cases a slight rise just to the left of the discontinuity
which suggests an energy cascade from small to large scales, whose blocking causes
a bottleneck effect similar to the one observed near the dissipative range of isotropic
turbulence (Falkovich 1994). Note that, because the Reynolds stresses are damped at
the long wavelengths in both cases, the total shear stress decreases by about a factor
of 2/3, and the normalized value of the spectra in the unmasked region increases
accordingly.

4.4. Outer–inner interactions

A last question that has to be addressed is what the present observations imply about
the effect of the outer flow on the near-wall layer. We started this paper by noting
that the length of the velocity spectra scales as a multiple of the flow thickness in
full-depth turbulent flows, and is therefore almost certainly controlled by the size of
the outer structures. This is consistent with the observation by del Álamo & Jiménez
(2003) that the very large structures are correlated across the whole channel, and that
there is, in that sense, no difference between inner and outer flow at those wavelengths.
We have also seen that the longest and widest structures are correlated across the
full domain in the autonomous simulations, including the potential region. As in
the previous case this suggests that those structures cannot be studied independently
from the potential dynamics of the core. From that point of view the autonomous
simulations are not ‘pure’ representations of the near-wall layer of full flows, but a
different turbulent flow with a different upper boundary condition.

Nevertheless, the observation that the maximum lengths of the structures scale in
outer units near the wall of the full simulations, while they are essentially infinite in
autonomous ones, suggests that the rotational core fluctuations are more effective in
disturbing the wall structures than the irrotational ones of the autonomous model.
This goes beyond the existence of a definite outer length scale in the former case.
Numerical experiments in which an outer scale was introduced in the autonomous
simulations by substituting the infinitely deep potential domain by a no-slip condition
at a given distance from the wall, failed to shorten the spectra. The most likely
explanation is that rotational fluctuations have their own dynamics, while potential
ones are governed by an instantaneous Laplace’s equation, and are enslaved to the
near-wall flow. In this sense the effect of the outer region in the full-depth flows can
be described as shortening the ‘infinitely’ long autonomous wall structures to lengths
of the order of the flow thickness, instead of as promoting their formation.

We can also say something about the scaling of the velocity fluctuations within
the buffer layer. The classical theory is that all the turbulence intensities scale with
uτ in that region, but we saw in the introduction that there is experimental evidence
for a weak dependence with Reτ . DeGraaff & Eaton (2000) showed that, while the

maximum of v′+2
reaches a constant asymptote at large Reynolds numbers, that of

u′+2
is proportional to the free-stream velocity Uc, which at high Reynolds numbers

increases as log(Reτ ). Assume that the scale for the near-wall velocity fluctuations is
some u0, not necessarily equal to uτ . We have seen in figure 7(a) that the spectral
density for v is flat for long wavelengths. Its one-dimensional spectrum can be
obtained by integrating kzE

2D
vv over the triangular wavelength region in that figure,
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giving

E1D
vv (kx) ∼ u2

0

∫ ∞
λ−1

z d log(λz) ∼ u2
0, (4.8)

with at most logarithmic corrections. On the other hand, the long spectra of u in
figure 3(a) suggest a flat premultiplied spectrum, or

E1D
uu (kx) ∼ u2

0k
−1
x . (4.9)

We also saw in our discussion of the cospectrum that the cross-correlation coefficient
of u and v becomes unity for long wavelengths, which implies that the long-wave
cospectrum has the form

−E1D
uv (kx) ≈

(
E1D

uu E1D
vv

)1/2 ∼ u2
0k

−1/2
x . (4.10)

The wall stress is obtained by integrating (4.10), which is integrable at kx =0, giving

u2
τ = −

∫
0

E1D
uv dkx ∼ u2

0

∫
0

k−1/2
x dkx ∼ u2

0, (4.11)

and u0 = uτ . A similar integration of (4.8) confirms that v′ ∼ uτ , but the u-spectrum
in (4.9) is not integrable, and we have to consider the integration limits which, from
figure 1, are λ+

x ≈ (500, 10Reτ ). The result is

u′2 =

∫
E1D

uu dkx ∼ u2
τ log(Reτ ), (4.12)

which agrees with DeGraaff & Eaton (2000). This result only takes into account the
lengthening of the structures with the Reynolds number, but not the direct effect of
the outer flow in the form of wide structures reaching the wall, whose kinetic energy
would have to be included in (4.12). This contribution is negligible at the moderate
Reynolds numbers of the comparison simulation F0, but del Álamo et al. (2004a)
showed that the intensity of the outer structures scales with Uc instead of with uτ .
Its contribution to (4.12) would then be proportional to log2(Reτ ), and could become
dominant at sufficiently high Reynolds numbers, as proposed by Hunt & Morrison
(2000). Del Álamo et al. (2004a), however, argued that this is not necessarily the
case, and a sharper version of their argument is given next. The large structures have
velocities and length scales Uc and h. They are therefore essentially inviscid except
near the wall, where they form viscous Stokes layers which grow for times of the
order of h/Uc, and whose thicknesses are therefore δv ∼ (νh/Uc)

1/2. Assuming that
the velocity gradient within those layers is more or less uniform, the fluctuations at a
given y are of the order

u+
out = U+

c y/δv = (U+
c )3/2y+/Re1/2

τ , (4.13)

whose contribution to u′2 at a fixed y+ is of order u2
out ∼ u2

τRe−1
τ log3(Reτ ), and

remains negligible with respect to (4.12) for all Reτ .

5. Conclusions
We have seen that the small-scale structures of the near-wall region organize

themselves into much larger scales, especially visible in the spectrum of the streamwise
velocity component and in the Reynolds-stress cospectrum. It was shown by del
Álamo & Jiménez (2003) that, in full-channel simulations, this part of the flow can
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be separated into two components: narrow structures that scale in wall units and
which are only correlated across the buffer layer, and wider ones with spanwise and
streamwise wavelengths of the order of the flow thickness that are correlated across
the full channel height.

We have shown that the narrow structures with λx � λz are autonomous at all
scales, in the sense of surviving with little change even in simulations in which the
outer flow is numerically removed, but that the wider component is absent from the
autonomous simulations, and is clearly connected with the effect of the outer flow.

This makes the autonomous simulations in this paper a good laboratory in which
to study the long narrow structures in isolation, without interference from the outer
dynamics.

We have shown that most of the v-spectrum can be understood in terms of a more or
less random superposition of short wall-normal velocity structures, with dimensions of
the order of λ+

x × λ+
z = 300 × 50 and advection velocities c+ ≈ 10. We have associated

them with the quasi-streamwise vortices often described in the literature. Their
intensity peaks within the buffer layer, and agrees well with the full simulations
when the latter are filtered within the same range of spanwise wavenumbers. Wider
and longer v-structures extend beyond the buffer layer, and are truncated by the
numerical mask in the autonomous simulations.

The streamwise velocity is organized into streaks with lateral spacing λ+
z ≈ 100,

which are infinitely long within the extent of our simulations. We have shown that
they are wakes left by the buffer-layer vortices as they move through the mean velocity
shear, and that this model describes well the relation between their lengths and their
widths. The analysis of the relative positions of the v- and u-structures suggests that
the wakes of individual vortices do not extend beyond about λ+

x ≈ 1000, and that
the much longer streaks observed in the long-wavelength end of the u-spectrum are
formed by coalescence of several shorter ones. Each of them is associated with several
v-structures.

By identifying the dynamics of the vortices and of the streaks with the evolution
of ∇2v and ωy , we have studied their interactions by manipulating both equations
independently. The vortices and the streaks are known to be involved in a nonlinear
mutual regeneration cycle at scales of the order of the length of the vortices, but
we have shown that the cycle is broken for wavelengths longer than 1000 wall units,
beyond which the streaks do not feed back into vortex formation. The dynamics
of these long structures are essentially two-dimensional in the (z, y) cross-plane, and
they do not cascade energy into shorter wavelengths. They can, however, still extract
energy from the mean flow, and almost half of the total Reynolds stresses resides in
them.

Note that this two-dimensional behaviour explains why channel simulations with
very short and narrow boxes have approximately correct velocity statistics, even if,
for example, the numerical boxes of the minimal channels of Jiménez & Moin (1991),
L+

x × L+
z = 400 × 100, are smaller than most of the u-spectrum in figure 3. The long

structures are represented in those simulations by the infinitely long modes with
kx =0.

We have finally argued that the effect of the outer flow on the near-wall streaks is to
limit their lengths to some multiple of the boundary layer thickness, by shortening the
otherwise infinitely long structures to be the same order as the outer-flow rotational
eddies. We have shown that this implies a k−1

x streamwise energy spectrum and a
near-wall peak of u′+2

which increases with the logarithm of the Reynolds number.
We have shown that this is true even in the presence of outer structures which reach
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the wall, because viscosity should damp them below δ+ ∼ Re1/2
τ , but that the scaling

of the energy could be different above that height.
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Österlund, J. M., Johansson, A. V., Nagib, H. M. & Hites, M. H. 2000 Spectral characteristics
of the overlap region in turbulent boundary layers. Extended abstract to Intl Congr. Theor.
Appl. Math. 2000, Chicago.

Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall
turbulence. J. Fluid Mech 165, 163–199.

Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.
23, 601–639.

Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.

Shah, D. A. & Antonia, R. A. 1989 Scaling of the bursting period in turbulent boundary layer
and duct flow. Phys. Fluids A 1, 318–25.

Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd. ed, p. 135. Cambridge University
Press.

Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81,
4140–4143.

Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93–102.

Wills, J. A. B. 1964 On convection velocities in turbulent shear flows. J. Fluid Mech. 20, 419–432.


